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Abstract. In fractional calculus the order (β) of 
differentiation or integration is not an integer number, 
generally β is a fractional number between 0 and 1. The 
root of fractional calculus goes back to the 18th century, 
and this calculus is intensively developing nowadays, too. 
Application of fractional calculus can be found in 
rheology, in electrical impedance spectroscopy, in 
physiological description. It is interesting, that the 
description of viscoelastic properties of biological material 
is much more accurate with fractional calculus than with 
ordinary differentiation and integration. In this work the 
creeping and recovery curves of a simple sweet, - gum 
candy –and bread slice, were approached with ordinary and 
fractional calculus. The rheological parameters of gum 
candy were determined. The fractional calculus gave better 
fit on the measured creep recovery curve points, than 
classical rheology models containing discrete elastic and 
viscous elements. 
 

 
 
INTRODUCTION 

In many cases the experimentally 
observed relaxation function exhibit a 
stretched (Kohlrausch) exponential decay 

))/t(exp(F)t(F 0
ατ−= , where F denotes 

the relaxing physical quantity (for example 
light intensity, stress relaxation in 
viscoelastic material, dielectric relaxation, 
etc.), t is the time, τ  is a constant and 

10 <α<  is a number (Schiessel et al., 
1995). An appropriate tool to describe 
these relaxation processes is the fractional 
calculus (Süli, 2012). 

The so called “Fractional Calculus” 
was born more than 300 years ago. In a 
letter dated September 30th, 1695 
L'Hopital wrote to Leibniz asking him 
about a particular notation he had used in 
his publications for the nth-derivative of 

the linear function f(x) = x, n

n

Dx

xD  

L'Hopital's posed the question to Leibniz, 
what would the result be if n = 1/2. 
Leibniz's response: "An apparent paradox, 
from which one day useful consequences 
will be drawn."  

Within the 20th century especially 
numerous applications and physical 
manifestations of fractional calculus have 
been found (Mainardi and Spada, 2011; 
Schiessel et al., 1995). While the physical 
meaning is difficult to grasp, the 
definitions themselves are no more 
rigorous than those of their integer order 
counterparts. 

Within the 20th century especially 
numerous applications and physical 
manifestations of fractional calculus have 
been found (Mainardi and Spada, 2011; 
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Schiessel et al., 1995). While the physical 
meaning is difficult to grasp, the 
definitions themselves are no more 
rigorous than those of their integer order 
counterparts. 

α  order fractional integral according 
to Riemann-Liouville for a f(t) real or 
complex function can be given by the 
formula 
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where t is real variable, x>0, α >0 is a real number and ( ) ∫
∞

−α−=αΓ
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1y dyye  is the 

Gamma-function. There are several definitions for α  order fractional derivative, 
practically as many as many mathematicians dealt with fractional calculus. A definition 
in which the Riemann-Liouville fractional integral is used can be given by the next 
expression: 
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where m-1<α <m and m is an integer number, α  is a real number (Loverro, 2004). 
 

In this work a stretched exponential 
function was fitted on creep and recovery 
curves of various food materials. 
 
MATERIALS AND METHODS 

The investigated materials: bread and 
gum candy were purchased in the local 
market. The creep-recovery test (CRT) 
curves were measured with a texture 
analyser TA-XT2 from Stable Micro 
System (Godalming, United Kingdom). 
The bread slices were pressed with a plexi 
cylinder of 36 mm diameter, and gum 
candies were pressed a metal cylinder of 
75 mm diameter. The CRT test consists of 
four segments. The first segment is 
loading the sample with constant speed of 
measuring head until a pre-set force is 
reached. In the second segment the 

deformation is creeping under the constant 
force during a pre-set period. In the third 
segment (unloading) the probe is raised 
until the force on head becomes zero. In 
the fourth segment - in recovery - the 
relaxation of sample continues so, that the 
measuring head is raised when the relaxed 
sample reaches the probe. In our 
measurements the pre-set time was 60 s 
for both creeping and recovery period. The 
force in creeping period was 5 N and 2,5 N 
for gum candy and bread, respectively. 

The creeping and recovery part of CRT 
are suitable for the determination of 
rheological parameters of sample material 
with model functions. The four-element 
Burgers model (Fig. 1) can describe both 
the creeping and recovery processes 
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Figure 1. 
The Burgers model. E0 and Er, represents the elastic modulus of the two spring elements 

and the rη  and η  represents the viscosity of the two dashpots 
 
The differential equation of four-element Burgers model (Sitkei, 1981) for σ  stress and 
for ε  strain in normal calculus 
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and the solution of it is for creeping strain ( )tε  in time, t, when the stress is constant 
const0 =σ=σ : 
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where 
r

r E
T η

= , the retardation time and the solution of it for recovery strain ( )tε  in 

time, t, after t1 time (time elapsed to beginning of recovery) when the stress becomes 
zero ( 0=σ ):  
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The differential equation of Burgers model in fractional calculus: 
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and the solution is for creeping and recovery parts: 
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respectively, where 10 <ν<  and 10 <β<  
The (1) and (3) expressions were fitted on creeping curves and the (2) and (4) 
expressions on the recovery curves. The elastic modulus, viscosities and β  parameter 
were determined. 
 
RESULTS AND DISCUSSION 

Typical creep-recovery curve of bread 
can be seen on Fig. 2. Similar CRT curve 
was measured on gum candies, too. The 
relative quick load part is followed by 
much longer creeping part. The creeping 
part of all CRT curves was approached 
with Burgers model of normal and 

fractional calculus, with equation (1) and 
(3). After the creeping part there is a 
relative quick unload segment which is 
followed by recovery curve. The recovery 
part of CRT curves was fitted by Burgers 
model both with normal and fractional 
calculus, with expressions (2) and (4).  
 

 

 
 

Figure 2. 
A typical creep-recovery curve of a bread slice. 

 
The result of curve fitting is 

demonstrated on Fig. 3. The stretched 
exponential function gave better approach 
of measured points especially in the 
beginning of both creeping and recovery 
part. The value of parameters from 

creeping period is very similar to the 
values from recovery period (Table 1.) for 
both investigated objects. Generally 
parameter values are lower from 
approaching the recovery part according to 
parameter values from creeping part. 
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Figure 3 
The fitting of creeping and recovery parts of CRT curve of bread (A,B) 

and of gum candy (C,D) 
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Table 1: The parameters of Burgers model from approaching the measured curves 
 

Material Calculus part E0, kPa Er, kPa η , MPas 
creeping 16,2+0,8 52,2+3,2 0,39+0,02 normal recovery  34,6+2,4 0,37+0,04 
creeping 18,4+1,0 31,8+3,5 0,25+0,06 bread 

fractional recovery  26,0+2,2 0,24+0,04 
creeping 47,8+2,6 502,7+13,2 3,12+0,12 normal recovery  127,2+8,2 2,57+0,19 
creeping 48,3+1,1 332,7+18,2 3,32+0,23 gum candy 

fractional recovery  88,2+7,5 1,72+0,10 
 

Material Calculus part vη , MPas β  
creeping 8,73+0,72  normal recovery 5,11+0,64  
creeping 16,39+0,98 0,521 bread 

fractional recovery 5,45+0,57 0,628 
creeping 52,73+8,57  normal recovery 60,31+10,24  
creeping 133,63+35,97 0,612 gum candy 

fractional recovery 258,73+29,76 0,625 
 
 

It can be explained by the fact, that in 
the recovery period the stress is already 
zero, but in creeping period is about 2-3 
kPa. Our earlier investigation showed, that 
both elastic moduli and viscosities of 
Burgers model for gum candy linearly 
increased, if the stress on the sample 
increased (Csima, 2015). This increase can 
be caused by structure changes under 
stress. 

The lower parameter values for bread 
according to parameter values for gum 
candy can be explained with the lower 
elasticity and hardness of bread compared 
to gum candy. 
 
CONCLUSIONS 
 

The approach of creep and recovery 
part of CRT curves was proved more 

precise with fractional calculus than with 
normal calculus. It seems that the stretched 
exponential function better describes 
especially the quick processes of both 
creeping and recovery curves. 
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